Multiplicative cascades applied to PDEs (two numerical examples)

نویسنده

  • Jorge M. Ramírez
چکیده

Numerical approximations to the Fourier transformed solution of partial differential equations are obtained via Monte Carlo simulation of certain random multiplicative cascades. Two particular equations are considered: linear diffusion equation and viscous Burgers equation. The algorithms proposed exploit the structure of the branching random walks in which the multiplicative cascades are defined. The results show initial numerical approximations with errors less than 5% in the leading Fourier coefficients of the solution. This approximation is then improved substantially using a Picard iteration scheme on the integral equation associated with the representation of the respective PDE in Fourier space. 2005 Elsevier Inc. All rights reserved. PACS: 65U05; 65P05; 60H30

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions

Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...

متن کامل

RESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE

In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...

متن کامل

Numerical Solution of Nonlinear PDEs by Using Two-Level Iterative Techniques and Radial Basis Functions

‎Radial basis function method has been used to handle linear and‎ ‎nonlinear equations‎. ‎The purpose of this paper is to introduce the method of RBF to‎ ‎an existing method in solving nonlinear two-level iterative‎ ‎techniques and also the method is implemented to four numerical‎ ‎examples‎. ‎The results reveal that the technique is very effective‎ ‎and simple. Th...

متن کامل

Adaptive moving mesh computations for reaction-diffusion systems

In this paper we describe an adaptive moving mesh technique and its application to reaction-diffusion models from chemistry. The method is based on a coordinate transformation between physical and computational coordinates. The transformation can be viewed as a solution of adaptive mesh partial differential equations (PDEs) which is derived from the minimization of a mesh-energy integral. For a...

متن کامل

Computing the Dynamics of Complex Singularities of Nonlinear PDEs

A two-step strategy is proposed for the computation of singularities in nonlinear PDEs. The first step is the numerical solution of the PDE using a Fourier spectral method; the second step involves numerical analytical continuation into the complex plane using the epsilon algorithm to sum the Fourier series. Test examples include the inviscid Burgers and nonlinear heat equations, as well as a t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 214  شماره 

صفحات  -

تاریخ انتشار 2006